DNV-GL

Regional Frequency Analysis for spatial extreme value analysis of ocean waves

Wave Workshop 2019

Erik Vanem

14 November 2019

Motivation and background

- Reliable statistical description of extreme ocean environments are important for the design of ships and other marine structures
 - Typically interested in 20-, 25- or 100-year return values of relevant parameters, e.g. significant wave height, $H_{\rm S}$
 - Can be achieved by establishing a probability distribution based on historical data
- Uncertainties become large for large return periods compared to available data records
 - May utilize information in data collected at different, but similar sites
- Return value estimates for specific locations where there are no data
- Spatial changes due to climate change

Introduction

- Regional Frequency Analysis is a well established methodology in various geosciences, in particular hydrology
 - Not much used for ocean waves
- The main idea is to identify homogeneous regions and use all data in those regions to more accurately estimate the quantile function of a random variable
- Main assumption in the index flood (or index wave) approach:
 - The frequency distributions at locations within homogeneous regions are identical apart from a location-specific scaling factor – the index wave

$$Q_i(F) = \mu_i q(F)$$

 $Q_i(F)$ - quantile function at site i

 μ_i - index wave at location i

q(F) - regional growth curve for the homogeneous region

F - cumulative probability distribution

Wave data

DNV GL © 2017

- RFA applied to significant wave height over the North Atlantic
 - Spatial grid of 142 x 113 grid points
 - Use annual maxima
- Wave climate data obtained from ExWaCli project, based on EC-EARTH model output and WAM wave model
 - One historical run (1970 1999)
 - Future projections for RCP 4.5 and RCP 8.5 scenarios (2071 2100)

14 November 2019

Main steps of a RFA

- 1. Screening the data
 - a. Remove obvious errors, look for grossly discordant sites
- 2. Identification of homogeneous regions
 - a) Clustering based on attributes, watershed filter
 - b) Testing regions for homogeneity/heterogeneity, H-statistic
 - c) Possibly reassign locations
- 3. Choice of frequency distribution
 - a) Goodness-of-fit tests, intuition
- 4. Estimation of frequency distribution
 - a) Method of L-moments
- -> Extreme value analysis

Modelling assumptions

- Observations at a particular location are iid
- Observations at different sites are independent

DNV GL © 2017 14 November 2019 DNV·GL

Analysis and results

DNV·GL

Identifying Homogeneous regions

- Selecting number of regions (partly subjective) -> 10, 20 and 30 regions tried
- Assigning sites to regions and testing
 - Clustering based on attributes + watershed filter
 - Test statistics based on L-moments

7 DNV GL © 2017 14 November 2019 DNV·GL

Effect of removing regionally clearly discordant sites

10 regions for Historical data

- A. Regions identified by hierarchical clustering and K-means clustering on attributes
- B. Applying watershed filter
- C. Removing clearly discordant sites

Testing for homogeneity

- Test for homogeneity based on the H-statistic
 - H ≥ 2: Possibly heterogeneous
 - H < 2: Reasonably homogeneous</p>
 - Except for historical data, the regions appear to be fairly homogeneous in most areas South of Greenland

9 DNV GL © 2017 14 November 2019 DNV·GL

Comparing densities for locations within regions

Choice of distribution function and estimation

- Use annual maxima so GEV distribution is a reasonable choice
- This also compares well in terms of the goodness-of-fit statistics
- Model parameters estimated by method of L-moments

Regional growth curve together with quantile functions for individual sites:

Extreme value analysis based on RFA

20-year return values over the whole area in the different scenarios

Extreme value analysis based on RFA

100-year return values

Extreme value analysis based on RFA – selected locations

Discussion – sensitivity to the number of regions

At some locations, the results are not sensitive to the number of regions.
However, at some locations – in particular locations at the border between regions – the number of regions assumed influence the results.

Regional vs. grid-point modeling

 Applying regional frequency analysis generally gives much more accurate return value estimates – especially for high return values

The effect of climate change

- NB: General conclusions about climate change cannot be made based on one climate run from one climate model - but RFA is able to detect long term trends due to climate change
 - E.g. from 20-year return value maps:

- The results of this analysis suggest:
 - 1) Highest return values decline in a future climate
 - 2) Area of high return values above a certain threshold increase

Summary and conclusions

- RFA may be applied to ocean wave data
- Useful for Extreme value analysis
 - Obtains more robust estimates of high return values; Narrower confidence bands
 - Estimated return values are within a reasonable range
- Useful in spatial analysis
 - May interpolate to ungauged sites
- Main assumptions:
 - data at a particular location are iid -> probably OK for annual maxima
 - Data at different sites are independent -> may not be entirely satisfied if annual maxima from neighbouring points are from the same storm event
- Identification and assigning regions perhaps most critical step
- May be used to assess high-level changes in spatial patterns due to climate change

Paper with details have been published in Ocean Engineering

Thanks for your attention!

Erik Vanem

Erik.Vanem@dnvgl.com +47 6757 9900

www.dnvgl.com

SAFER, SMARTER, GREENER